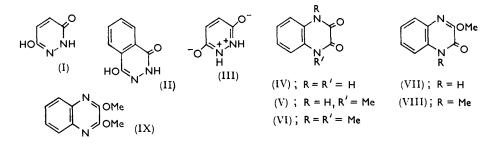
The Infrared Spectra of Polycyclic Heteroaromatic 775. Compounds. Part II.¹ Quinoxaline-2,3-diones.

By G. W. H. CHEESEMAN, A. R. KATRITZKY, and S. ØKSNE.

Infrared spectra confirm that tautomeric forms of the quinoxaline-2,3dione type are more stable than those of the 3-hydroxy-2-quinoxalone or 2,3dihydroxyquinoxaline types.


MALEIC HYDRAZIDE has been shown to exist predominantly as (I), and phthalic hydrazide as (II), by various techniques.² Presumably this is because full conjugation in the dioxoforms of these compounds is hindered by two electron-donor groups' being adjacent to each other; in valence-bond terms, canonical forms of type (III) are not favoured. The predominant existence in the hydroxy-form of a six-membered heterocycle with the hydroxy-group α or γ to a nitrogen atom is most unusual. The reverse situation, in which the carbonyl groups are α to each other, is thus of interest.

Cheeseman³ compared the ultraviolet spectra of quinoxaline-2,3-dione (IV) and its

¹ Part I, Katritzky and Jones, J., 1960, 2942.

² See, inter al., Cheinker, Gortinskaia, and Sycheva, J. Chim. phys., 1958, **55**, 217; Zhur. fiz. Khim., 1957, **31**, 599; Elvidge and Redman, J., 1960, 1710; Miller and White, Canad. J. Chem., 1956, **34**, 1510. ³ Cheeseman, J., 1958, 108.

O- and N-methyl-derivatives; this comparison indicated that the parent compound probably existed predominantly in the dione form. This conclusion is now supported

by the infrared spectra of compounds (IV)--(IX) measured as Nujol and perchlorobutadiene mulls, potassium bromide discs, and, where solubility allowed, in chloroform solution. The spectra of solutions and solids were similar, indicating that no change in the predominant tautomer occurred. The assignments in the Tables are based on previous work on o-disubstituted benzenes,⁴ quinolines,¹ pyridones,⁵ and methoxy-compounds,⁶ but are very tentative because of the small number of compounds investigated, and their low solubility.

The 3000 cm.⁻¹ Region.—Little useful information can be obtained from this region. The potentially tautomeric compounds are very sparingly soluble in chloroform, and their solid-state spectra show a complex pattern of peaks in the range 3100-2700 cm.⁻¹ which would be due to either OH or NH bonds.

The 1750-1550 cm.⁻¹ Region.—The compounds (IV)--(VI) containing two carbonyl groups show a very strong vC=O near 1690 cm.⁻¹, split into two peaks. Those with one

Compd.			γC	=0	Ring stretching			
(IV)	NH	NH	, 1712vs	1685vs	, 1618m	1600w		
(\mathbf{V})	NH	NMe	1690 *	1675vs	1610m	1598m		
(ÙI)	NMe	NMe	1708 *	1677vs	1601w	1594w		
(ÌII)	NH	OMe		1690vs	1615m	1583vs		
(ÌIII)	NMe	OMe		1675vs	1613vs	1579m		
(IX)	OMe	OMe			1617w	{ 1592m 1587m		

TABLE 1.	The	1750 - 14	550 cm. ⁻¹	region.
----------	-----	-----------	-----------------------	---------

In these Tables bands quoted are for the spectra of mulls; positions are all in cm.⁻¹ units. Intensities are designated in the conventional manner. * indicates shoulder.

carbonyl group (VII and VIII) show a narrower single band in the same region. All the compounds show two bands near 1600 cm.⁻¹, one of these being very strong for the monocarbonyl compounds (see Table 1).

The 1550-1350 cm.⁻¹ Region.-Absorption hereabouts would be expected from ring stretching modes, O- and N-methyl CH-deformation modes, and possibly NH-deformation The small number of compounds available does not allow a detailed assignment, modes. but differences are found between the absorption of the three main types of compound (see Table 2).

The 1350—1100 cm.⁻¹ Region.—The ring-oxygen stretching frequency of the methoxycompound appears as two or more strong bands at 1330-1230 cm.⁻¹, which are noticeably absent from the other compounds (see Table 3).

- ⁴ Katritzky and Jones, J., 1959, 3670.
- Katritzky and Jones, J., 1960, 2947.
 Katritzky and Coats, J., 1959, 2062.

The 1100-750 cm.⁻¹ Region.-In this region (see Table 4) the spectra show the inand out-of-plane CH-deformation bands, which should be similar for all the compounds. Other Compounds.-The spectra of 6-chloro- and 6,7-dichloro-quinoxaline-2,3-dione,

	TA	BLE 2 .	The 1550—1350 cm. ⁻¹ Region.							
(IV) (V)	{	1507m 1522m 1510m		1481m 1465 *		1427m 1443m	1397s 1394s			
(VI)	-	1514m	{	1481 * 1462m		1427m	1379 s			
(VII)		1495m		1461m	{	1450w 1440w	1385w			
(VIII)		1495 *	{	1480m 1460*		1445m	1417w			
(IX)	{	1527m 150 3 w	{	1487s 1458m		1426m	1379 s			

TABLE 3. The 1350—1100 cm.⁻¹ Region.

	Ring str	retching	OMe	β -CH		OMe		β -CH		NMe and β-CH	
(IV)	1335w	1315w			1258m						1125w
(V)	1334w	1 3 12w			1261m				1159m	{	1139w 1125m
(VI)	1327 *	1 3 11m	_		1268m		_		1162w	{	1150w 1102w
(VII)	1341m		1309vs	{	1279w 1267w		1245vs		1157w		1118w
(VIII)	1 33 8m	_	$\left\{ \begin{array}{c} 1324 { m s} \\ 1305 { m s} \end{array} \right.$		1280w	{	1246 vs 1225 w		1182w	{	1160w 1120m
(IX)			$\begin{cases} 1330s \\ 1320m \end{cases}$	{	1290w 1262w		1248m 122 3 s	{	1191m 1175m		1148w

the mono-N-methyl derivatives of 6-chloro-, 6-nitro-, and 6-bromo-quinoxaline-2,3-dione, and the di-N-methyl derivatives of 6-chloro- and 6-bromo-quinoxaline-2,3-dione indicate that all these compounds also exist in the di-oxo-form. The detailed spectra will be submitted to the DMS scheme (Butterworths).

		TABLE 4.	The 1100)—'	750 cm	¹ Region.				
	NMe	β -CH	OMe		γ-СН	?		γ-CH		γ-CH
(IV)	_	10 33 w	_		9 43 w	892w	{	862m 853m	{	758m 751m
(V)	1043w	10 3 0w			933w	898w		863m		749s
(VI)	1058w	1022w			932w	913w				749s
(VII)	_	1029w	1005s	{	946w 933w	90 3 w	{	880 85 3 w	{	759m 749s
(VIII)	1049m	1040 *	972m		943w	908w		858w		758vs
(IX)		1019m	997s		951m	920w		891m		7 5 7s

Experimental.—Preparation of the compounds has been described previously.³ The spectra were measured on a Perkin-Elmer model 21 instrument for the solutions and Nujol mulls, and on an Infracord for the potassium bromide discs.

One of us (G. W. H. C.) thanks the Central Research Fund of London University for financial support.

QUEEN ELIZABETH COLLEGE, LONDON, W.8.

UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE.

[Received, March 29th, 1961.]

3135